ONU SAE Baja
Data Acquisition System

Ryan Rose, Gabe Sevigny
Ryan Carl, Nathanael Smith
SAE Baja Data Acquisition System

Pediatric Algorithm
Background - SAE Baja

- First SAE Baja race held in 1976
- ONU is in its 14th year of Baja
 - Olivet Nazarene University’s Walker School of Engineering
Background - Data Acquisition

- Olivet has never had a data acquisition system
 - Maximize the reliability and minimize lap time
- Other Baja teams have used systems while at the competition
 - Research on Baja forums
- Worked with ONU’s Baja team
 - Highlighted main variables that need to be measured
Project Scope

- To design, implement, and test data acquisition system
 - Should have multiple sensors
 - Wired to logger
- Data that needs to be logged
 - Independent wheel speed
 - CVT pulley ratio
 - Engine RPM
 - GPS location
 - Accelerometer
- Work with the Baja team
 - Make adjustments as they see fit
Constraints

- Whole logger system waterproof/mud proof
- Handle moderate vibrations
 - Data System needs to be on Baja car
- Data needs log while car is in use at all times
 - Have visible confirmation
- Self powered
- Can be removed from the car if needed
 - Car may be redesigned each year
Design Alternatives

Distributed system

“Smart” sensors process data, central logger aggregates data.

Pros: flexible
Cons: complicated, cost

Centralized system

“Dumb” sensors, central logger processes and aggregates data.

Pros: simpler, cost
Cons: not as flexible
Final Design
Centralized system based on Raspberry Pi 3
Wheel Speed Sensors
Sensor Interface
GPS Receiver/Accelerometer
Wiring
Power Supply
User Interface
Overall System
Logged Data

<table>
<thead>
<tr>
<th>Metric:</th>
<th>Time</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Speed</th>
<th>X-Accel</th>
<th>Y-Accel</th>
<th>Z-Accel</th>
<th>Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units:</td>
<td>HHMMSS</td>
<td>DD.dddddd</td>
<td>DDD.dddd</td>
<td>m/s</td>
<td>m/s^2</td>
<td>m/s^2</td>
<td>m/s^2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>152210.9</td>
<td>+41.155845</td>
<td>-87.883563</td>
<td>0.1</td>
<td>0.076633</td>
<td>0.306533</td>
<td>9.502512</td>
<td>0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>152211</td>
<td>+41.155845</td>
<td>-87.883563</td>
<td>0.1</td>
<td>0.076633</td>
<td>0.306533</td>
<td>9.579145</td>
<td>0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>152211.1</td>
<td>+41.155845</td>
<td>-87.883562</td>
<td>0.1</td>
<td>0.153266</td>
<td>0.383166</td>
<td>9.502512</td>
<td>0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>152211.2</td>
<td>+41.155847</td>
<td>-87.883562</td>
<td>0.1</td>
<td>0.076633</td>
<td>0.306533</td>
<td>9.502512</td>
<td>0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>152211.3</td>
<td>+41.155847</td>
<td>-87.883562</td>
<td>0.1</td>
<td>0.076633</td>
<td>0.229899</td>
<td>9.655779</td>
<td>0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>152211.4</td>
<td>+41.155847</td>
<td>-87.883562</td>
<td>0.1</td>
<td>0.076633</td>
<td>0.229899</td>
<td>9.502512</td>
<td>0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>
Work Completed

- System that collects and logs...
 - Position
 - Speed
 - Acceleration
 - Up to 8 readings from sensor interface
- Main waterproof enclosure that securely holds...
 - Logger
 - GPS/Accelerometer module
 - Sensor interface
 - Battery
- Mounting brackets with sensors for wheel speed
• Battery life and digital storage space far exceed requirements
• Interface for driver to operate system
• Preliminary work for CVT ratio and engine RPM
• Installation Guide
• Operation Instructions
• Sensor Diagram
Testing

- Enclosure durability
- Software verification and validation
- GPS accuracy
- Accelerometer accuracy
- Component Interoperability
Work Remaining

- CVT Ratio/Engine RPM
 - software adjustments
 - mount sensors
- Wheel speed
 - software adjustments
 - mount sensors
- Wiring
 - connect sensors to logger
 - fixed with hook and loop straps to car body
- Vibration/Durability testing
- Mount main enclosure
- Complete documentation
Possible Improvements

- Cooling technology
- Power consumption considerations
- Visualization software
- Wireless technology for logger on/off
- Additional metrics
Dr. Joseph Schroeder - Faculty Advisor
Dr. Bob Allen - ONU Baja Team Advisor
Jordan Houser - ONU Baja Team Leader
ONU Baja Team Members
Prof. Joe Makarewicz - Hardware/Software Advisor