10-1-2010

Synthesis and Cyclic Voltammetry of A2E

Elizabeth White
Olivet Nazarene University, ewhit2@live.olivet.edu

Willa Harper
Olivet Nazarene University, wharper@olivet.edu

Follow this and additional works at: http://digitalcommons.olivet.edu/chem_stsc

Part of the Ophthalmology Commons, and the Physical Chemistry Commons

Recommended Citation
http://digitalcommons.olivet.edu/chem_stsc/1

This Presentation is brought to you for free and open access by the Chemistry at Digital Commons @ Olivet. It has been accepted for inclusion in Student Scholarship - Chemistry by an authorized administrator of Digital Commons @ Olivet. For more information, please contact kboyens@olivet.edu.
Synthesis and Cyclic Voltammetry of A2E

Elizabeth White, Larry Ferren, and Willa Harper
Department of Physical Sciences, Olivet Nazarene University, Bourbonnais, Illinois 60914

Introduction and purpose
As aging occurs, great exposure to light leads to the build-up of fluorescent materials called lipofuscin in the retinal pigment epithelial cells (Parish, Hashimoto, Nakanishi, Dillon, & Sparrow, 1998). The accumulation of lipofuscin is correlated to macular degeneration because it is frequently found in the lipofuscin (Zhou, Jang, Kim, 1990). The compound A2E is being studied in this project because it is frequently found in the lipofuscin (Zhou, Jang, Kim, 1990). The compound A2E was synthesized and cyclic voltammetry was used in an attempt to understand retinal diseases. In this study, A2E was synthesized and cyclic voltammetry was used in an attempt to determine the reduction potential. This information may be helpful in clarifying the chemical properties of A2E.

Materials and methods
• A2E was synthesized with a 2:1 molar ratio for all-trans-retinal and ethanolamine in the presence of sulfuric acid, with methanol as a solvent. The mixture was stirred in the dark for two days.
• A2E was purified through gravity chromatography on a silica gel column. The mixture was eluted with 5:95 CH3OH:CH2Cl2 and 8:92 CH3OH:CH2Cl2:trifluoroacetic acid (TFA).
• The sample taken from the gravity column was analyzed with high performance liquid chromatography (HPLC) on a 75% methanol:25% CH2Cl2 column, using 75% methanol, 25% water, 0.1% TFA for 10 minutes; a gradient increased the solvent to 100% methanol between 10 and 25 minutes; 100% methanol was held for 35 minutes; and the original conditions were restored from 35 to 40 minutes. The sample was monitored at two wavelengths: 330nm and 430nm.
• The A2E sample was analyzed with a cyclic voltammeter (Epsilon from Bioanalytical Systems) for determination of the reduction potential of A2E. The sample was tested in methanol with 0.1 M tetrabutylammonium hexafluorophosphate (TBAHFP) used as a supporting electrolyte.

Current results
Figure 4 shows the results for the cyclic voltammetry analysis on an A2E sample in methanol. Both the blank and the A2E contained the TBAHFP in the test solution. A2E, A2E2, and A2E3 are three different runs that were separated in time. Figure 5 displays an analysis with only the supporting electrolyte in methanol. This test was performed to investigate the behavior of the TBAHFP alone. This solution was analyzed twelve times with five minutes between each run. When one looks at the two graphs, it appears as though there is a small reduction peak. There also seems to be two oxidation peaks in each graph. The second peak has a negative current and is much more clearly defined than the first. Both the A2E/TBAHFP and the TBAHFP solutions show this pattern in the cyclic voltammograms. Since this is such a unique shape, it appears that the TBAHFP may be responsible for the results. When A2E was run in methanol without the supporting electrolyte, no peaks were detected. This circumstance indicates that the A2E may not be responsible for the shape of the voltammogram. As the solutions equilibrated, the peaks became much larger and more defined. The longer the solutions stayed in the vial before testing, the more the results changed. This may mean that the TBAHFP reacts during the process, possibly with oxygen in the air. Therefore, perhaps only the first run is accurate.

Future studies
• The questionable results obtained with tetrabutylammonium hexafluorophosphate indicate the need for further experiments. These should be carried out with another supporting electrolyte.
• The voltammograms changed over time. More experiments should be performed on the A2E in the presence of TBAHFP and TBAHFP alone. The analyses should be designed so that the solutions can be analyzed immediately upon solution.

Acknowledgments
Thanks go to Dr. Larry Ferren for his cyclic voltammetry experience, Dr. Elizabeth Gaillard of Northern Illinois University for her experience, and Dr. Eliza Baker of Arts and Sciences of Olivet Nazarene University for financial support. Also, thanks go to the Pence-Boyce Scholarship Committee, and the Department of Physical Sciences.

Materials and methods
• A2E was synthesized with a 2:1 molar ratio for all-trans-retinal and ethanolamine in the presence of sulfuric acid, with methanol as a solvent. The mixture was stirred in the dark for two days.
• A2E was purified through gravity chromatography on a silica gel column. The mixture was eluted with 5:95 CH3OH:CH2Cl2 and 8:92 CH3OH:CH2Cl2:trifluoroacetic acid (TFA).
• The sample taken from the gravity column was analyzed with a Hitachi HPLC system (Elite LaChrom, L-2130) to determine the presence of A2E. The mixture was eluted with a Nova-Pak C18 3.9x150mm column, using 75% methanol, 25% water: 0.1% TFA for 10 minutes; a gradient increased the solvent to 100% methanol between 10 and 25 minutes; 100% methanol was held for 35 minutes; and the original conditions were restored from 35 to 40 minutes. The sample was monitored at two wavelengths: 330nm and 430nm.
• The A2E sample was analyzed with a cyclic voltammeter (Epsilon from Bioanalytical Systems) for determination of the reduction potential of A2E. The sample was tested in methanol with 0.1 M tetrabutylammonium hexafluorophosphate (TBAHFP) used as a supporting electrolyte.

Current results
Figure 4 shows the results for the cyclic voltammetry analysis on an A2E sample in methanol. Both the blank and the A2E contained the TBAHFP in the test solution. A2E, A2E2, and A2E3 are three different runs that were separated in time. Figure 5 displays an analysis with only the supporting electrolyte in methanol. This test was performed to investigate the behavior of the TBAHFP alone. This solution was analyzed twelve times with five minutes between each run. The graph contains six of these runs, each recorded ten minutes after the previous. When one looks at the two graphs, it appears as though there is a small reduction peak. There also seem to be two oxidation peaks in each graph. The second peak has a negative current and is much more clearly defined than the first. Both the A2E/TBAHFP and the TBAHFP solutions show this pattern in the cyclic voltammograms. Since this is such as unique shape, it appears that the TBAHFP may be responsible for the results. When A2E was run in methanol without the supporting electrolyte, no peaks were detected. This circumstance indicates that the A2E may not be responsible for the shape of the voltammogram. As the solutions equilibrated, the peaks became much larger and more defined. The longer the solutions stayed in the vial before testing, the more the results changed. This may mean that the TBAHFP reacts during the process, possibly with oxygen in the air. Therefore, perhaps only the first run is accurate.

Future studies
• The questionable results obtained with tetrabutylammonium hexafluorophosphate indicate the need for further experiments. These should be carried out with another supporting electrolyte.
• The voltammograms changed over time. More experiments should be performed on the A2E in the presence of TBAHFP and TBAHFP alone. The analyses should be designed so that the solutions can be analyzed immediately upon solution.

Acknowledgments
Thanks go to Dr. Larry Ferren for his cyclic voltammetry experience, Dr. Elizabeth Gaillard of Northern Illinois University for her experience, and Dr. Eliza Baker of Arts and Sciences of Olivet Nazarene University for financial support. Also, thanks go to the Pence-Boyce Scholarship Committee, and the Department of Physical Sciences.