A Bonanza of Birthday Bewilderments

Dale K. Hathaway
Olivet Nazarene University, hathaway@olivet.edu

Follow this and additional works at: https://digitalcommons.olivet.edu/math_facp
Part of the Mathematics Commons, and the Probability Commons

Recommended Citation

This Article is brought to you for free and open access by the Mathematics at Digital Commons @ Olivet. It has been accepted for inclusion in Faculty Scholarship – Mathematics by an authorized administrator of Digital Commons @ Olivet. For more information, please contact digitalcommons@olivet.edu.
We are fascinated by coincidences. A pair of airplane hijackings to Cuba take place within 24 hours of each other, the same machine in a plant breaks down twice within two days while other machines continue to work smoothly, or in your advanced Calculus class of 25 there are two students with the same birthday. The culprit here is the birthday problem, often stated as follows: What is the smallest number of people needed to ensure that the probability of at least two having the same birthday exceeds 50%? Typically three assumptions are made: the birthdays are assumed to be equally likely, independent of one another, and the possibility of a February 29 birthday is usually ignored.

The traditional approach to the birthday problem is to consider the complement of the probability of at least one match, i.e., the probability of no matches. There's a good reason for tackling the problem in this apparently backwards way: there are a great number of different types of matches that can happen, there could be a single pair, or two pairs, there could be a triple or four of a kind and a pair. On the other hand, it is straightforward to count the number of ways for there to be no matches. For the first person there are 365 days that could be his birthday, for the second person there are only 364 available days since one day has already been used by the first person, for the third person there are only 363 available days since the first two individuals have already used two days, and so on until the nth person who has 366 - n available days. The number of ways to choose n distinct dates from the 365 days of the year is 365 · 364 · 363 · · · (366 - n). The total number of possible sets of birthdays if we allow duplication is 365n, since each of the n people has 365 available days on which to be born. Together these give the following probability:

\[P(\text{no matching birthdays}) = \frac{365 \cdot 364 \cdot 363 \cdots (366 - n)}{365^n}. \]

The complement of this probability is the one we are interested in

\[P(\text{at least one match}) = 1 - \frac{365 \cdot 364 \cdot 363 \cdots (366 - n)}{365^n}. \]

The smallest n which gives a probability greater than 0.5 is n = 23, which can be checked by simply doing the computation.

Here's another way to think about the problem: for each pair of individuals we have either a match or no matches. There are \(n(n - 1)/2 \) pairs of individuals. For each pair of individuals the birthdays either match, \(P(\text{a match}) = 1/365 \), or they do not match, \(P(\text{no match}) = 364/365 \). Thus, the probability of no matches is \((1/365)^0 \cdot (364/365)^{n(n - 1)/2} \). The smallest value of n that makes this probability less than .5 is 23. This is beautifully simple but, unfortunately, wrong. The difficulty is that these pairs are not independent, i.e., if we know that A and B have the same birthday and that B and C have the same birthday, then we know how A and C are related. (Technically speaking, we're using the binomial distribution which requires independent trials.) Is it amazing that we got the right answer using the wrong method? Not really, it turns out that the binomial distribution in this case is a reasonably good approximation to the true distribution. (Although one could just pretend that this is a truly astounding meta-coincidence, i.e., a coincidence encountered in the study of coincidences.)

The Birthmate Problem

We are even more fascinated with coincidences when they involve us personally. You might wonder how many people would take to give a better than 50% chance of a match of your own birthday. This problem is called the birthmate problem and is commonly stated: what is the smallest number of people needed so that the probability of a match of a specific predetermined birthday is greater than 50%?
You might initially think that the answer to the birthmate problem is around 183. That answer would be correct if the birthdays were chosen without replacement, but asking different people their birthdays is actually choosing the birthdays with replacement. We already know that among 23 people there is a better than 50% chance of at least one match, so it would make sense that more than 183 people are needed because there will probably be several duplicated birthdays before we find a match to the specific birthday we are interested in.

To solve this problem consider that each person has a \(\frac{1}{365} \) chance of matching the specific birthday. The probability of no matches among \(n \) individuals is \(\left(\frac{364}{365} \right)^n \) since the birthdays are independent. The probability of at least one match of the specific birthday among \(n \) individuals is \(1 - \left(\frac{364}{365} \right)^n \). The smallest \(n \) for which this probability is greater than 0.5 is \(n = 253 \). Interestingly enough if we were to allow February 29 birthdays to exist, then the critical value of \(n \) to match non-February 29 birthday is still \(n = 253 \). The probability of a single person having a birthday match of a non-February 29 birthday is \(\frac{4}{365} = \frac{4}{1461} \), since there is one February 29 birthday every 4 years while all of the other birthdays occur four times. Using the same approach as above we obtain a probability of at least one match out of \(n \) people as \(1 - \left(\frac{361}{365} \right)^n \). The smallest \(n \) that gives a better than 50% probability is \(n = 253 \). Can you determine the number of people needed to give a better than 50% chance at matching a birthday of February 29?

Birthday Opportunities

While the birthday problem and the birthmate problem are definitely different they do seem to be related. Just how related they are can be examined by considering how many opportunities for a match there are in each case.

For the birthmate problem, the number of opportunities is simply the number of individuals involved. Each individual has one chance to match the specific birthday. So for \(n = 253 \) there are 253 opportunities for a match.

For the birthday problem each individual has a chance to match all of the birthdays for the individuals already included. The first person provides one possible birthday to match, the second person provides one opportunity for a match with the first person, the third person provides two opportunities for a match, one with each of the first two individuals, and so on. After the \(n \)th person has been added there are \(1 + 2 + 3 + \cdots + n - 1 = \frac{n(n-1)}{2} \) opportunities for a match. Amazingly, for \(n = 23 \) the number of opportunities is 253, the same as for the birthmate problem!

Even though the two problems are related through this idea of birthday opportunities, the relationship is not exact. Note that the formula obtained in the binomial approximation to the birthday problem, while an approximation of the birthday probability, is basically the same as the exact birthmate probability formula when the number of birthday opportunities are equated. The numeric probabilities for the two problems also indicate that while they can be related through this idea of birthday opportunities, the relationship is approximate. The probability of at least one match for the birthday problem for \(n = 23 \) is 0.5073 while for the birthmate problem the probability of at least one match for \(n = 253 \) is 0.5005.

Matching Up Your Sister

Suppose you go to a party and meet someone who has the same birthday as your sister. Many people would think that this is an unusual coincidence. But if there are seven people in your family then there need only be 33 people at the party to have a better than even chance of matching one birthday from your family. This type of coincidence is another variation of the birthday problem: What is the smallest number of people needed for a better than 50% chance that at least one pair has a matching birthday with one member of that pair in the first \(k \) individuals? In the above situation, your family serves as the first \(k \) individuals. (We'll use \(n \) to denote the total number of individuals at our party.)

To solve this we will again use the complement approach. For there to be no matches with one of the first \(k \) individuals, those first \(k \) individuals all must have different birthdays from each other and the other individuals still to be chosen. There are 365 choices for the first person's birthday. There are 364 choices for the second person's birthday since they must not match the first person's birthday. Continuing, we obtain \((365 - k + 1) \) choices for the \(k \)th person since they must not match any of the previously chosen \(k - 1 \) days. Now the rest of the individuals cannot match any of the first \(k \) birthdays, but they can match each others' birthdays. This means for the remaining \(n - k \) individuals each has \((365 - k) \) choices for her birthday. The number of possible sets of birthdays for \(n \) people is \(365^n \). The probability of no person among the first \(k \) having a match with any of the others is

\[
P(\text{no matches}) = \frac{365 \cdot 364 \cdots (365 - k + 1) \cdot (365 - k)^{n-k}}{365^n}.
\]

The probability of a match with one of the first \(k \) people is

\[
P(\text{at least one match}) = 1 - \frac{365 \cdot 364 \cdots (365 - k + 1) \cdot (365 - k)^{n-k}}{365^n}.
\]

The number of people involved must be at least 25, as seen in the birthday problem, or the probability will never exceed 50%. The following chart summarizes the smallest values of \(k \) and \(n \) that give a better than 50% probability of a match.

| \(n \) | 23 24 25 26 27 28 29 31 33 36 40 46 54 66 86 128 254 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| \(k \) | 20 17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 |

As before, we can use the idea of matching opportunities to get a good approximation to the solutions for this prob-
lem. Person 1 has \(n - 1 \) opportunities for a match, her birth­
day could match any of the remaining \(n - 1 \) people. Person 2
has \(n - 2 \) new opportunities for a match since his birthday
could match any of the remaining \(n - 2 \) people (his birthday
has already been compared to the first person). Continuing
in this fashion, for person \(k \), her birthday has \(n - k \) new op­
portunities for a match. Summing the number of opportu­
nities for the first \(k \) people gives \(kn - k(k+1)/2 = k(n - (k+1)/2) \)
as the total number of opportunities. Equating the number
of opportunities to \(253 \) and solving for \(n \) gives a formula
that does a good job of finding \((n, k) \) values that provide
probabilities near \(50\% \) (the \(n \) values are rounded to the
nearest integer). In fact in only one place \((k = 13, n = 26) \)
does it give a pair different from the above chart. But keep
in mind this formula is only an approximation, just as the
relationship between the birthday problem and the birth­
mate problem is approximate.

Matching Your Lottery Picks

Suppose you are working at your convenience mart and
two consecutive customers come in and purchase lottery
tickets. The tickets each have 6 numbers selected out of 45.
You notice that one number is selected by both of the ticket
buyers. You might think of this as a coincidence, but in fact,
it turns out that there is a \(60\% \) chance that at least one
number will be selected by both buyers. This is still another
variation of the birthday problem: If each person is allowed
to choose \(k \) distinct dates out of 365 days (6 distinct num­bers on a lottery ticket out of 45), what is the smallest num­ber of dates each person should choose to give a better than
\(50\% \) chance of at least one match among the entire group?
(Another way to think about it: how amazing a coincidence
is it if my mother and your sister share a birthday?)

We would expect for small \(k \) similar probabilities to those
for the original birthday problem. The problem here is that
the dates are not all independent. Since each person chooses
\(k \) distinct dates, those dates will be dependent and will not
result in any matches within the group of \(k \) dates. Because
of this we might expect that as \(k \) increases, more total birth­
days will be needed to obtain a match.

To find the probability for this variation again consider
the complement, the probability of no matches and con­
struct the probability one person at a time. For the first
person the probability of no matches is \(1 \), since his chosen
birthdays must be distinct. For the second person the prob­
ability of not matching any of the first person’s \(k \) dates is
\((365-k)/365 \cdot (365-k-1)/364 \cdot \ldots \cdot (365-2k+1)/365-k+1 \). The
numerators
\((365-k) \cdot (365-k-1) \cdot \ldots \cdot (365-2k+1) \)
count the number of ways to choose the \(k \) dates that do not
match the first person’s \(k \) selections. The denominators are
due to the \(k \) dates chosen by the second person being dis-

tinct. For the third person the probability of not matching

any of the first two individual's dates is

\[
\frac{365 \cdot 365 - 2k \cdot 364 \cdot 365 - 3k + 1}{365}
\]

This continues down until the \(n \)th person, whose probabil-

ty of not matching any of the \(k \) dates chosen by the second person being dis-

tinct. For the third person the probability of not matching

due to the \(k \) dates chosen by the second person being dis-

tinct. Person 2 provides \(k^2 \) opportunities for a match since

\[
\frac{365 \cdot 365 - (n-1)k \cdot 364 \cdot 365 - nk + 1}{365}
\]

The probabilities of these \(n \) people can then be multiplied

to give the overall probability of no matches

\[
P(\text{no matches}) = \frac{365 \cdot 364 \cdot \ldots \cdot (365 - nk + 1)}{365^n}
\]

The probability of at least one match is then

\[
P(\text{at least one match}) = 1 - \frac{365 \cdot 364 \cdot \ldots \cdot (365 - nk + 1)}{365^n}
\]

The following table summarizes the smallest value of

\(k \) that gives a probability of greater than 50% for various values of \(n \).

<table>
<thead>
<tr>
<th>(k)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>23</td>
<td>12</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Notice that for each pair the product \(nk \) is in the neigh-

borhood of 23 with the product generally staying further from

23 as \(k \) increases. Intuitively this makes sense since as

\(k \) increases for a fixed total number of birthdays, \(nk \), the number of opportunities for a match decreases because

within each set of \(k \) birthdays chosen by an individual there
cannot be a match. Therefore more total birthdays are
needed for larger values of \(k \).

We can also develop a birthday opportunities formula

for this problem. In this case, Person 1, by himself, pro-

vides no opportunity for a match since his dates are dis-

tinct. Person 2 provides \(k^2 \) opportunities for a match since

each of her \(k \) distinct dates could match any of the \(k \) dates

of the first person. Person 3 provides \(2k^2 \) new opportunities

for a match because each of his dates can match any of the

\(k \) previously chosen dates. Continuing, the \(n \)th person pro-

vides \((n-1)k^2 \) new opportunities for a match. Totaling the

opportunities gives \(k^2 \cdot n(n-1)/2 \). Equating this expres-

sion to 255 gives a formula to relate \(n \) and \(k \) values that provide

probabilities near 50%. Solving this formula for \(k \) gives

\[
k = \sqrt[5]{\frac{500}{(n-1)}}.
\]

Here the formula works well for larger \(n \)

(7 \(\leq n \leq 23 \)), but as \(n \) decreases to 6 or fewer the values of

\(k \) given by the formula are less accurate. As already men-

tioned this is not too surprising because as \(k \) increases the

independence assumption used in the birthmate problem is

further violated by having a larger number of birthdays

that cannot be matches of each other.

One of the amazing aspects of these problems is not so

much the quantity of variations (only a handful have been

considered here), but instead that so many of the variations

are so interconnected to each other. But with mathematics,

we expect that. Different legitimate approaches to the same

problem should lead to the same answer. But it does make

one wonder if 255 should be the number we remember when

dealing with the birthday problem, rather than 23.

For Further Reading

The story of the double hijacking can be found in Hijack-

ing Planes to Cuba: An Up-Dated Version of the Birthday

41-44, by Ned Glick. The machine shop failure is described

2 (1980), p.15-18, by A. F. Bissell. The matching up your

sister variation originated with Edmund A. Gehan in Note

on the Birthday Problem, The American Statistician, Vol. 22

(1968). Neville Spencer devised the lottery pick variation

in Celebrating the Birthday Problem, The Mathematics

Teacher, Vol. 70, No. 4 (1977). Fred Mosteller, one of the

great statisticians of the twentieth century, invented the

birthmate problem and wrote about it and other fascinat-

ing probabilistic problems in Understanding the Birthday

and in Fifty Challenging Problems in Probability, Addison-Wesley,