Document Type

Thesis

First Advisor

Dr. Stephen Case

Publication Date

Spring 5-10-2019

Scholarship Domain(s)

Scholarship of Discovery

Abstract

Fermi National Accelerator Laboratory is sending a 3U CubeSat into LEO to search for a 3.5 keV photon corresponding to the decay of a theorized dark matter particle called the sterile neutrino. The CubeSat will encounter environmental variations while in orbit that can be computed through an orbital analysis using System’s Tool Kit. In order to minimize thermal noise readout, improve optical resolution, and increase bandwidth, the sensors must be kept below 170K while taking data. This temperature is difficult to achieve due to radiation from the Sun and the Earth’s albedo radiation. Through the thermal analysis, the lowest temperature achieved by the CubeSat throughout its orbit is 190K. In order to maintain the required sensor temperature, the CubeSat’s cooling methods must be changed.

Using the information gained from the thermal analysis, the solar panel simulation results can be analyzed. A six-panel approach resulted in maximum power of 11 watts. The nine-panel approach generated 22 watts at a sustained level, such that each orbit would yield a total of 39.6 kJ. With a power requirement of 20 watts, the nine-panel approach would be ideal.

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

COinS